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Adaptation and survivors in a random Boolean network
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We introduce the competitive agent with imitation strategy in a random Boolean network, in which the agent
plays a competitive game that rewards those in minority. After a long time interval, the worst performer
changes its strategy to the one of the best and the process is repeated. The network, initially in a chaotic state,
evolves to an intermittent state and finally reaches a frozen state. Time series of survived Gpecses
strategies are imitated by other ageritsthe system depend on the connectivity of each agent. In a system
with various connectivity groups, the low connectivity groups win the minority game over the high connec-
tivity groups. We also compared the result with mutation strategy system.
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In the agent based models used in social sciencesess[7]. In a natural complex system, typical ways of adap-
economy, ecosystems, and genetic regulatory systems, agetagion are imitation and mutation.
interact directly with others, and global structures emerge Hence, motivated by these works, we tackle the problem
from these interactions. An important question that is being®f how cooperation arises in a dynamically evolving network
addressed in a number of ways is how the aggregate or gl®f agents. We have investigated how leading agents emerge
bal behavior emerges from the individual characteristics ofn the RBN by introducing worst performer’s imitation strat-
the agents. A particular aspect of this question is to under€dy [8]. The best performer whose strategy is imitated by
stand whether the global behavior is determined by averagether agents may play the role of leader.
commonly found agents or if a few individual distinct agents ~We consider a network oN (odd agents where each
can have a strong influence on the macrostructure. In thagent is assigned a Boolean varialte=0 or 1. TheN
latter case such special agents play the role of leaders. ~ agents separate, in general, into subcategories of size
Generally speaking, the influence of each agent depend¥:. - . . Ny with =2 ;N,=N. A subcategornN, has a con-
on the network of interactions with other agents. Eachnectivity of k. Each ageni receives input fromK; other
agent's strategy can be represented as a function that spedistinct agents chosen at random in the system. The set of
fies a set of outputs for each possible input. Random Booleaiiputs for each agernit is quenched. The evolution of the
networks(RBN) proposed by Kauffmafil] are classic dis- system is specified b Boolean functions oK; variables,
crete genetic models where agent's strategy is represented @gch of the form at timé+1,
a simple Boolean function. It is shown that global order is
able to emerge from local rules in RBN. The state of an agent oi(t+1)=fi(o; (1),0i,(1), ... 'UiKi(t))- @
can be represented by two possible val{desr 0). This state
is the output of a Boolean function, which has as inputs théeach Boolean functiof; is chosen from possible25 func-
output activity of some other agents. The connectivity of thetions. It can be characterized by a homogeneity paranpeter
system and the bias used for the Boolean functions are relwhich represents that the value 1 is assigned to an output
evant parameters in order to statistically determine the netwith a probability p and 0 with a probability +p. With
work dynamics. In most cases, the network of interactions ispecified initial conditions, random but biased by a homoge-
fixed and given from the outset. However, it is natural toneity p, each agent is updated in parallel according to Eq.
consider the situation in which the network of interactions(1). The control parametersK( and p) determine two re-
evolves dynamically adapting itself to the global structure.gions: a frozen phase and a chaotic phase. They exhibit a
Adaptive system can be roughly characterized by two elephase order-disorder transition modulated by the values of
ments, one who should adapt and the other how to adapheir control parameters. In the single connectivity system
itself. As a primary step towards adaptive systems, Challetall agents have connectivitg), the critical condition is rep-
and Zhand 2] proposed the so-called minority garfdG) in  resented as follows:
which an odd number of agents successively compete to be
in the minority. There have been many studies of the statis-
tical properties of MG, which treat the game as a quasisto- Ke(p)= 2p(1=p)"
chastic systenf3-5|. In a recent paper, Paczuski, Bassler,
and Corral 6] introduced RBN with minority win game. The For K<K.; RBN starting from random initial condition
agents are competing against each other and at each time steg@aches frozen phase, while>K. RBN reaches chaotic
those in the minority win. The agent who was in the majorityphase. RBN withK=K_ are critical and the distribution of
most often over a long time scale, the epoch, changes itattractor lengths that the system reaches, starting from ran-
strategy randomlymutatior). They observed that the net- dom initial conditions, approaches a power law for large
work eventually evolves to a stationary but intermittent stateenough system sizes consistent with all previous work on
The change of strategies is approximated as an extremal pré&auffman networks.
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In our model, the agents in the minority are given their 1
individual score at each time step. The network was updated
until either the attractor of the dynamics was found, or the
length of the attractor was found to be larger than some
limiting value which was typically set at 10000 time steps
solely for reasons of numerical convenience. For lagthe
attractor length is found to scale approximately & [9]. ”=-,,._
As one epoch is terminated, the worst performer who has the 050 -
least score in the system is chosen for “imitation” selection.

The worst performer chose the input nodes and output Bool-
ean table the same as the best performer, substituting
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where indexm (n) is the worst(bes} performer; that is, the
worst performer imitated the strategy of the highest scores. If
two or more agents are the wordtes) performers, one of 0.02
them is chosen at random and changed. Starting from a ran- 5 = B0 =5 700

dom state, wher& is above the critical valu&.,the net- epoch per node T/N

work is initially driven into the chaotic phase. However, as

epoch goes on, it becomes difficult to reside in the chaotic FIG. 1. Evolution of the survived species with epoch for various
phase, because the imitation strategy decreases monotomalues ofK andN=441 andP;,;=0.5. To avoid trapping in expo-
cally the number of species in the system. If all the agentsential divergence of attractor length for high the simulations
begin to use similar strategies, and hence make the sanfi@ve been limited to,,=1000. No averaging has been performed
decision, such a strategy ceases to be profitable. Therefor@ the data(a) Distribution of survived speciesn log-linear plo}

any particular strategy’s success is short-lived. An emergend®" K=2,3,4,5,6,8. The fraction of survived agents appears to satu-
of leader agents corresponds to a decrease of survived spéte. it strays off the plot by increasing epoch steps furttter.
cies. The species are defined as the bunch of agents wiistribution of the survived speciesin log-log plog for K
have the same internal function and the same input agent?.z'?"d'*S’e'8 and/N=1.

The agent who is imitated by others the most number of_ . . . . .
g y Critical epochT, is defined as an epoch at which the sur-

times is the most prominent leader in the network system:” : LN
We found that the emergence of leaders is closely related t 'V?d species of the s_yst_em_change from exponential distri-
bution to power-law distribution over epoch steps.

the connectivity in the system by observing epoch sedes
VY y y ving ep ¢ For K=5, which we define as a higK region, the net-

fined asT) of survived species rating, , actual average ho- . s .
) D S g work system in the initially chaotic state never reached the

mogeneity in the syster, and attractor length. ; : ither f is initiall
We first investigated a single connectivity with initially no '"termittent state, neither frozen statps,,(K,'_I'z Is Initially
exponential distributed witle=7.7+0.1xX10 * and strays

bias system(initial actual average homogeneiB;,;;=0.5

where all agents have the same connectivity vé#duhat is, off the plot after epoch .step'l?l.\lzo..l?i. . .

N«=N, other N (k+K)=0. The process of adaptation is The system resu_des ina dlversny' state in wh|ch.ma_ny
monitored by measuring several parameters, such as sufPeCies could survive for a long period of time. A fit with
vived species, homogeneity, scores of the minority game foPCINtS givesf=0.17+0.03. ng, (K, T) in thelh|ghK region
agents, distributions of agents’ past records of best and wor&t €xPected to reach 1% of initial state in i@poch steps,

performers. The begworsy performer’s distribution can be WNere as in the lowk region, it always reached within 10 ,
characterized by the number of times of selecti@gn,) epoch steps. The standard deviation of the worst performer’s

for an agent. In order to estimate network dynamical be- Seléction distribution¥ for K=6 averaged over 44100 ep-
havior, it is instructive to define dynamical parameters, suctPch Steps shows/(W)=0.106, compared to that of RBN

i i i R
as unitary percent of agent's self-correlatiat,s) in timet ~ Minority game with the random update strategyz/(W")
and t+s [10], average activity of an agent A(i)=1/(t,  —0-135. This result indicates that the difference between the

B t, . . best performer and the worst one can be shrunk by introduc-
tl)zt:tlg'(t)’ where the sum is taken over the dynamlcaling the imitation strategy in the chaotic state. FerB<4,

attractor defined by, andt, [11,12. which we define as lowK region includingK <2, indepen-
We have simulated the network system with=441 as  dent of the initial connectivity and Boolean value, the net-
long as 16 epoch steps. The evolution of, (K, T) for vari-  work system in the initially chaotic phase, attractor length
ous values oK is shown in Fig. 1. For aK’s, T dependence peing very long, evolves to an intermittent state. Further-
of ng,(K,T) is as follows: more, it finally evolved to a frozen state, and never evolved
to an intermittent state again. The system finally evolves to a
Ng, (K, T)=exp{—a(K)T/N} if T<T(K), “unified” frozen state withinT/N=50 in which less than 1%
of initial species can survive the game. The typical picture of
Ne, (K, T)=consx T 2K if T>T(K). (4 intermitting attractor arising from this model is shown in Fig.
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FIG. 2. Time series of attractor length in each epochKer3,
N=1089, andP;,;=0.5 in the stationary state. The system evolves
to the intermittent state in epoch 812, and finally reaches the frozen
state in epoch 7035.
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2 for a system oK =3, N=1089, p;,;=0.5. In comparison epoch T

to the random update strategy shown in Fig. 1&}fwith the

same connectivit)K = 3, it takes less time to reach the inter-  FIG. 4. Time series of average connectivi€y, of two groups
mittent state and reach the frozen state. This is because tiRBN minority game in a particular simulation fo¢=1089. The
conformity among the same species may act as a freezirigitial states(at T=0) areN;=545, Ng=544, andP;,;=0.5. All
element to the network. In Fig. 1, the case shown in theagents that hav&=6 have died out at epoch 24071, and all 23
system evolves to the intermittent state at epoch per nodespecies that have survived the game hive3.

T/N={0.51,5.18 and reaches the frozen state at epoch per

nodes T/N={3.78,17.3 for K={3,4. The coefficientB  (reases as the ratio of the frozen state is increased, that is, as
changes when the system evolves to the intermittent stat@: is smaller. On the other hand, the distribution\sf, D,

For K=2, the network system, initially in the frozen state, —B.—W, shows no distinct difference between highand
remains in the same state with rapid decrease of surviveQJW'K thzla\t standard deviatiom, is almost independent ¢
species as epoch step increases. It finally reached “unified;’TD:Mﬁ5 averaged over ten Dtimes for eachThe randorr'1-
state in which only 1% of initial species or less could survive o< of the besorsh performer’s selection becomes higher
the g?me. A f't with points gives exponemt=7.7+0.1 as the attractor length is getting shorter, since more agents
< 107" for initial epoch steps. After several epoch steps,q 4 hecome the candidate for the bésorsY performer.

T/N=0.7, the evolution ofns,(K,T) saturates arounds,  powever, the histogram for both high and ld&shows the
=0.60 and turns into power-law distributed with exponentg;ijar probability distribution.

,8:.0_.9. Critical .conn.ectivityKC that distinguishes betW(_aen We have simulated the size dependenceng{K,T,N)
“unified” and “diversity” states may depend oM, and is it various system sizedl and find the functional form
between 4K <5 above the cr|t|<_:aK of Eq. (2)._The initial ne,(K,T/N) is independent ol as far as the system is in the
state e_md randomness of selections have an influence on dgy, region. But for smallel, there is some possibility
termining the ratio of decreas_,e. _ that the system of higK region could evolve to an intermit-
We also observed fluctuation of average homogeneity Ofent state and to a frozen state as the degree of freedom is
all agentsP over epoch steps. In Fig. 3, we plot the evolution roq,ced. For example, the initially chaotic system evolves to
of P for bothK=3 andK =6 generated by a game with 5,0 state three times out of ten whh=5, N=121 within
=441, P, =0.5. Fork ={2,3,4,5,6,, standard deviation of /N~ 10 epoch steps. To determine the primary factor that
homogeneity averaged over 10000 epoch steps sReWs getermines the evolution of the system is still an open issue.
:{1'_6;( 107, Zf’x 107%, 9.3x10 %, 1.7x10°% 8.5 The same transition from unified state to diversity state
X 107", 5.3x10"%}. On the whole, the fluctuation d? in- ¢4y be found when we vary instead ofK. For fixed N
=441, K=6, the transition would occur whdpy,; is below

0.53 P.=0.64. The initially biased system may evolve B
052 =0.5 as epoch step increases. A freezing action of decreasing
051 species and a chaotic action of evolvingompete with each
~ other, which may determine the evolved state of the system.
(g Second we investigated the no biasd?],(=0.5) RBN

0.49 minority game with the same imitation rules where agents
with various connectivity values are mixed. Figure 4 shows
average connectivityK,, = 1/N=;. kN, versus the initial
0.47 epoch T fraction of the low connectivity agent, where there are two
groups of agentsNg#0 (as a representative of chaotic
FIG. 3. Time series of homogeneiy for K=3, K=8 (N  statg, N3#0 (as of frozen stape N;(i #3,6)=0, where a
=441, P;,;=0.5). group is defined as an agent’s herd with same connectivity

0.48
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value. The figure shows that the two groups compete, and thees decreases rapidly and a few species remain in the sys-
low K group gains an advantage over the higlgroup to  tem. On the other hand, in diversity phase, it becomes
win the minority game. Even when the fraction of low con- power-law distributed with a small coefficient and quite an
nectivity r=0.1 in the initial state, most of agents in the amount of species could remain for a long time. In a network
system finally evolve to those with smaller connectivity in system with various connectivity groups, we have numeri-
several epoch steps. If the homogeneity is biased in the sygally shown that the group with low is more likely to
tem, it is natural that the agent with low connectivity have asyryive the minority win game. Much future work is open to
higher probablity to win the game. They have a high prob-y sorts of variation. An interesting question is whether a
ability to be in all 0 or all 1 state. Hence, they are apt to becomparable mechanism may occur in a natural complex sys-
selected as the best/worst performer in a constant output Zgsm, “one example where such mechanism could occur is the
ros or 1's winning system. Even in the no-biased state, Wee o ation of buying/selling activity in the markgt3]. In

observe that a s_mall group with low wins the Minority order to consider social and marketing implementations, we
game over the higkk group. Although low ones are vulner- : : . oo
should consider agents with mutation rules and imitation

able to the selection in the same group. In general, with Iov¥ | ltogether. which mav b ntial features for the d
connectivity the agents have a higher probability of surviv- ues aftogether, ch may be essential features for the dy=

als. We also obtained the same result from the system d?amics of the complex network system. We should also in-
which initial group distribution iN; =N,= - - - =Njq. clude several rules that allow different types of updated for

In summary, we have studied the minority game of ran-£ach agent to implement more actual social/feconomic model.

dom Boolean networks and their topological evolution on theWe still have no theoretical description even for the primitive
basis of the worst performer imitation rules. The imitation imitation model. To explain that the system may be strongly
rules give rise to the emergence of the leader who have ittifluenced by the initial states and random choice of the best
strategy in its origin, and cooperators who imitate leader’sworst performers when the parameter approaches the criti-
strategies. The connectivity parameter determines two recal value, and whether the dynamics can be explained in
gions of survival species: unified phase and diversity phasderms of average parameters or leading particular ones, is a
We have observed that in unified phase, the number of spetitical issue.
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